PHYSICAL REVIEW E VOLUME 59, NUMBER 2 FEBRUARY 1999

Statistical features of large fluctuations in stochastic systems
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The fluctuation of transitional paths that describe the decay from a metastable state are studied with a
space-time Monte Carlo algorithm. For a bistable stochastic system we characterize the statistical properties
that describe the growth of large fluctuations. Interesting statistical features are discussed. In particular, we
study the fluctuation enhancemetdrge non-Gaussian fluctuatipthat occurs as the system escapes from a
metastable state. The results are discussed in the context of a scaling theory for the decay from an unstable
state.[S1063-651X%99)12202-3
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[. INTRODUCTION state up to and over the free-energy barrier. This is precisely
what we wish to study in this paper: the statistical properties
The occurrence of large fluctuations is fundamental toof the transitional paths that describe the escape from a meta-
many physical processes, such as nucleation in phase transtable state.
tions, chemical reactions, mutations in DNA sequences, and We introduce an efficient method to study large fluctua-
failures in electronic devices. A typical large fluctuation istions in stochastic systems. The method, a space-time Monte
one that enables a system to escape from a metastable statarlo (STMC) algorithm, was used in Ref7] in a study of
Although such events are rare, they are responsible for the dynamic critical exponent in the Ising model. In this
broad variety of physical processes. paper, we adapt the method for the purpose of characterizing
The study of large fluctuations is difficult due to the rarity the statistical properties of the transitional paths in the inter-
of the events. As such, there is little known regarding theesting regime where the barrier height is much larger than
statistics of these ev_ents. The only known insight into thene noise strength. There was related work in [R&f, where
study of large fluctuations goes back to the work of Onsagefne fiyctuational paths were generated by an analog electric

3.”? _E/Iziphlupglg. Fo_rt_smz?ll n(t)rlfe L_antge_v In ;:Ihyrla(rjmcs,_ghe circuit system. The fluctuational state in this study was not
istribution of transitional pathétrajectories that describe very close to the saddle point; this is due to the difficulty in

the growth of a fluctuation out of a stable staie sharply sampling large fluctuations in real time. The method we use

peaked around a most probable or optimal path. For equili in this paper allows us to study numerically the more inac-
rium systems, the optimal path for a transition to some fluc- pap y Y

tuational state is the time-reversed path of the decay of thaﬁeSSibIe regime of flgctuatiops that drivg t'he system all the
fluctuation. Aside from this fundamental time reversibility of W& OVer the potential barrier in the limit of very small
the optimal path for equilibrium dynamics, there are few"0iS€: The statistics of such processes are very d|ff|CL_JIt to
known generic features for the growth of large fluctuations Study, and, to our knowledge, the work we present here is the
For nongradient dynamical systentaonequilibrium sys- first such study. Our goal is to search for some generic fea-
tems the situation is far more nontrivial; recent studies havetures that characterize the growth of large fluctuations, and in
indicated interesting behavig¢singularities in the pattern of ~ particular, to study the early stages of rare nucleation events
optimal pathg2,3]. in multicomponent systems. Indeed our primary motivation
There has been extensive work on the decay and relaxer devising the STMC method is the possibility of applying
ation of fluctuations to the equilibrium state. Starting from ait to the study of rare nucleation events in physical systems.
Master equation level, the extensivity propefsystem size In this paper, to illustrate the method and approach, we study
or small noise expansigfis used to derive equations for the a simple bistable stochastic model.
most probable behavid#]. For the decay of large fluctua- Our main interest in this study is the fluctuation of the
tions, such as the decay from an unstable s&dddle point  transitional paths that start at(lacally) stable or metastable
it is known that the system size expansion breaks down, anstate and grow up to some fluctuational state. For the model
the most probable path is not meanindfby; this is also the bistable system studied here, we study and characterize the
case for the decay of metastable stgt@s Thus we can statistical properties of the transitional paths in the limit of
expect nontrivial(i.e., non-Gaussigrbehavior in the statis- small noise. In particular, we quantify the large non-
tical distribution of the transitional paths that describe largeGaussian fluctuations that result from the system transvers-
fluctuations from a locally stable state, i.e., fluctuationsing the potential barrier. The basic features of the data, such
whereby the system makes a transition from a metastablas an anomalous fluctuation and a fluctuation enhancement,
will be discussed in analogy with Suzuki’'s scaling thefsy
for the decay from an unstable state.

* Author to whom correspondence should be addressed. Electronic In Sec. Il we outline the STMC method and some relevant

address: marco@phyast.pitt.edu theoretical background. The model and the results are dis-

1063-651X/99/562)/15637)/$15.00 PRE 59 1563 ©1999 The American Physical Society



1564 MARCO PANICONI AND MICHAEL F. ZIMMER PRE 59

cussed in Sec. lll, followed by a brief summary and outlinefluctuation of the field$ conditioned on an initial and future

of future work in Sec. IV. time constraint. Thus we can study the statistical quantity
p(o.t|de,T;4,,0) (te[0,T]), which can describe the ef-
Il. METHOD AND BACKGROUND fect a future time constraint has on the present. Schulman

considered such a quantity recently to clarify the issue of
A. STMC time-reversibility in thermodynamics and cosmoloph3].

In order to study the statistics of rare events, one needs Bor the purpose of studying rare transitions out of a meta-
method that can efficiently generate an ensemble of sucétable statep,, to some fluctuational staig; , one generates
events. The method we use is a space-time Monte Carlaen ensemble of trajectories with the boundary conditions
algorithm. The principal idea is to study histories, whole ¢,= ¢, (metastable stateand ¢r= ¢, where the fluctua-
space-time paths, in contrast to the usual approach, which fonal state¢y is the equilibrium statgor a saddle point
to update a spatial lattice. A common feature of the modelstate, a critical droplet, efc.
we are interested in is that the probability for an entire his- The notion of introducing a Hamiltonian defined on the
tory may be expressed in terms of an action function whosgath space has been discusbti 15 for discrete space-time
Lagrangian is a local function in the field variableé$x,t) models(probabilistic cellular automataFor discrete space-
(and field derivatives i.e., in the form time modeldwhere we denote bg(t) the (spin configura-

tion of the system at timg], the weight becomes
W~ exp[— 5], (2.2

with S= [dt L(¢(x,t),¢(x,1)). This form of the probability  \y=T] Ps(t)|s(t—1)=TT piu(si(t)|s(t—1),x(t—1)),
weight on the path space is guaranteed for Markov processes, t it

such as the Langevin dynamics considered in this work. We (2.6
consider Langevin dynamics of the fortfor simplicity the

case of a scalar field and additive noise whereP(s(t)|s(t— 1)) denotes the transition probability be-

L tween two spatial configurations at adjacent time sliges,
¢=F(o,\)+en, (2.2 labels the spatial lattice sit@;; denotes the individual site

. . . . . . transition rate, and;(t) denotes the set of spifis.g., nearest
where is the zero mean Gaussian white noise with variance, . hbors on which p, depends. Note that by the structure
(n(x,t) n(x’,8))=8(t—s)8(x—x'), and € is the overall g Pic dep ) y

strength of the noise. The probability weight on the pathohf the W?'?htW’ the (?ynam!cs (.)f thedsys:jem_ IS cl)ne In V.l\;:mh
space for model2.2) is given by[9,10] the spatial spin configuration is update simultaneodisly .
paralle), in contrast to the usual MC where the update is
done sequentiallyi.e., after each spin fljp It is important to
, (2.3  nhotice that because of the parallel update structure, if the
single site transition rate satisfies detailed balance with re-
spect to some Hamiltonian, the same detailed balance condi-
where$, is the Onsager-Machlup actiga], tion may not hold forP(s(t)|s(t—1)). In particular, for the
case wherep;, is the Glauber transition ratg;;=0.5(1
So:%f (¢—F)2dx dt (2.4) - tanh@H/_Z.kb'D),.for say an Ising system, the_detailed_ bal-
ance condition with respect to the Ising Hamiltonian is not
i ) L satisfied forP(s(t)|s(t—1)) [14]. One can strictly impose
anld the term higher order in the noise is given 8  he detailed balance condition by introducing the two-step
=2 Jd4F dxdt[11]. Domany algorithm[16]. However, the STMC algorithm is

In the STMC algorithm, the objective is to generate his-gomewhat tedious to code, and the two-step update scheme
tories over some time-intervdl with probability weightW. does not seem to be a very natural dynamics.

This is achie'ved in Fhe ugual manner by the Metropoli's' al- n this paper, we study a continuum model, where the
gorithm[12], i.e., by imposing the detailed balance condition 5jy5ve issue of detailed balance does not aféseept for
, discretization corrections, see belowor Langevin models
Plex)—¢ (X’t))=exp(S(¢(x,t))—S(¢’(x,t)), of the form ¢=F+ €7, one can express the action func-
P(¢'(X,t)— ¢p(X,1)) tional (2.3) to first order in the time discretization &80,17]
(2.5  (suppressing the space dependgnce

W~exp

1
- 555
€

where P(¢(x,t)— ¢’ (x,t)) denotes the transition probabil-
ity between twaospace-timeconfigurations, and the “Hamil- d E d(t)— d(ti_y) 2
i

o aF(¢)—BF(¢i-)

t
tonian” in Eq. (2.5 is the action functional defined on the S= 22
path space asl =S~ —InW. The detailed balance condition
guarantees that after many iterations or MC sigpiIC step

here refers to an update over the whole space-time volume +dt aEi dg,_F(di-1), (2.7
the probability of a path is sampled according W
~exd -S|

The boundary conditions on the space-time lattice of thevhere dt=t;—t;_1, ¢(t))=¢;, and a+pB=1, 0<eq,pB
form ¢(t=0)=¢,,dp(t=T)= ¢, allows us to study the =1. The family of actions parametrized ly and 8 arises
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from the equivalent ways of discretizing a continuous func-statistical quantityp(qﬁ,tl¢eq,T;¢m;O). For gradient dy-
tion. The different choices ofr and 8 result in correction  namical models the system passes through the saddle point in
terms of orderdt,/dt. the decay processi,— ¢eq), and thus, as discussed above,

For the case whereé=—d,H (as in the model studied in the variancg2.11) at the Gaussian level divergébe small
this papey, the detailed balance condition with respecHto noise expansion breaks dowrThe way to regularize the
is satisfied to ordedt\/dt, i.e., variance is to introduce the notion of collective coordinates,

in this case the collective coordinate being the position of the
, kink. There has been work on using the method of collective
exgH(¢)—H(¢")+ O(dt\/at)]- coordinates for the decay from an unstable state in stochastic
2.8 models[18]. However, we are not aware of any work on
directly calculating the expressiqv(¢,t|¢>eq,T;¢m;0), in
o particular for the regime of interest wheggt) is not close
B. Small noise limit to either,, or ¢eq-

In the limit of zero noisee— 0, the average or most prob-
able path¢,(t) is obtained by minimizing the Onsager-
Machlup action(2.4). Consider a zero-dimensional bistable
system, where the stable statefs. or ¢,) are separated by The simulations were performed for the modebte that
a saddle points. For gradient dynamicsH=—d,H), the  we now use the notatioth=Xx)
optimal path is

P(¢(D)— ' (1+dD) _
P(¢' ()= $(t+d)

IIl. RESULTS AND DISCUSSION

- x=F=rx—x3+h+ .
Bo(1)=—F(o(1) 2.9 X=F=rx=x*+hten, @3
for the growth of a fluctuation(i.e., say for the transition wherer>0, and the noise strength parameterefs For h
beq— b1, Pr<¢s), and =0, we havex,=—Xe;= — I andxs=0. The Metropolis
, algorithm is used to update tli'emporal lattice. The lattice
Do(1) =F(do(1)) (210  was updated by selecting a point, perturbing it, finding the

i difference in the actiors between the two configurations,
for the decay ¢n— deq, n>#s). The optimal path that anqg accepting the move using the Metropolis algorithm. As

above two solutions separated by an infinite time span whergnqate the configurations and different sampling functions

the system sits at the saddle poity. . (aside from the Metropolis ofieto improve statistics and
_ We are interested in studying tlilectuationof the tran- jncrease efficiency. However, in this paper, for simplicity,
sitional paths. The quantity of interest is the “proposal” moves are local movese., the field vari-
able at a given site is deviated by a random amount on some
X(O=(2(0)~($(1)?, @1 e g

The data presented for the model system were found with
e choicea= 8=0.5 in Eq.(2.7), which corresponds to the
Stratonovich discretization. We do not expect the qualitative
features of the result to be sensitive to the choice ahdpg.
Some data were checked for the case 1,8=0 (lto dis-

where () denotes an ensemble average. At the Gaussiaﬂ]
level, x is determined by the inverse of the fluctuation op-
erator £, which is obtained by expanding the action func-
tional (2.4) to second order around the optimal paik(t),

L=(F"F+F'F')— 2 (2.12 cretization) to confirm this. Data were also taken for a
v smaller dt, and no qualitative change was observed. The
whereF'=d, F (¢o(t)). time increment for the simulations reported below vels

=0.05, and the extent of the time axiswas chosen to be

As mentioned in Sec. |, the small noise expansion breaks Hiciently | h h ical ti le for th .
down for the decay from an unstable or metastable state, antt! |C|en_ty arger than t. e typica _tlme scalé for the transi-
tion, which decreases with For a given simulation, roughly

thus the zero noise theory is a singular limit. This singularity )
is related to the breaking of the time translational symmetry@POUt 10 or 10° (for very small noisgMC steps(recall that
a MC step refers to an update over the temporal lattice of

Consider the kinklike trajectoryp,(t) connectin att )
) Yol(l) 9¢m size T) were used to relax the system, and then

=0 to ¢s att=T. The position of the kink can occur any- h L btained b . h
where along the time axis, and is a Goldstone m@dehe the 3‘35'5“05 were obtained by averaging over another
~5x10'(10%) MC steps.

limit T—x). For largeT, the zero noise path exhibits a : . .

. . . . . Figure 1 shows the typical behavior for the average path
turning pom? hear the s_addle p_omt whebg~0. T.h's feature and the fluctuatiory(t) for the transitiorx,,— X.q. For each
leads to an mﬂmtg variance, since the fluctuation operétor sample path, statistics were obtained for the process from
has the solutionC¢,(t)=0, and due to the turning point at timet=0 (first time slice of the latticeup to the time where
¢ (note thatp,= 0 at the stable or metastable states,(t) the system crosses a given pokt. Since the transition
is a zero eigenvalue of the fluctuation operator. This zerdrom x,,— X; can occur anywhere along the temporal lattice,
eigenvalue signals the breakdown of the Gausg@mall we monitor the time when the process hits and accumu-
noise approximation. late statistics to the left of this time. We are interested in the

Our main interest in this paper is in the fluctuations of thebehavior of the process as it nucleates., as it makes it all
transitional pathsp,,— ¢¢q, Which are characterized by the the way over to the equilibrium statetherefore we choose
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3 ' T ' initial time as being at=—«. As mentioned above, for
each sample path in the ensemble we can refereaeto

be the time where the system reachfgs Thus the STMC
algorithm allows us to measure the statistical quantity
p(X,t|Xg,0;Xym, —) (t<0), termed the prehistory probabil-
ity in Ref. [8]. The effect of the final time boundary condi-
tion on the latticexg = X.q, is irrelevant ifx, is well over the
barrier and the noise? is small.

Some interesting features to be noted in Fig. 1 are the flat
region at the saddle poin{X)=0), which increases as the
noise decreases, and the pealgithat occurs in the growth
of the fluctuation[i.e., the region(x(t))<x,]. The location
of the peak occurs arountk)=1.4, which is close to the
spinodal point & \/r/3); away from this peak the fluctuation
is of ordere?. Also, though not visible on the scale of Fig. 1,
the fluctuation quickly relaxes fropp=0 at the end points of
the lattice(due to the fixed field constraint at the ends of the
lattice) to the correct valuggiven by y= 62/2F’(meeq)] in
the metastable and equilibrium states, respectively. Finally,
for a STMC simulation with the boundary conditiong
=X;<Xs,X|=Xn, We find a strong dependencebnxg ; ¥

<x(t)>

280 Z60 40 20 0 increases considerably with, for x5<<Xs.
t In order to analyze the general features of the data, we
05 , Y . consider the problem of the decay from an unstable state for

small noise Langevin dynamics. We know that the extensiv-
ity property breaks down and the small noise behavior in this
regime is described by a scaling thedf. In particular,
there is an extensive region whe&&e?#, and a scaling
regime wheres< €2#; 8 denotes the deviation of the initial
state from the unstablesaddle point state, and the positive
exponentu= 3 for our model system. The fluctuation in the
extensive regime scales @, and is characterized by an
anomalous fluctuation that scales witasA~ 1/5%[A is the
peak value ofy(t) as the system decays to equilibrilinm
the scaling regime, the zero noise limit is a singular limit.
The decay of the system in the scaling regime is character-
1 ized by an initial stage with time scale,~ —In(e?), where
the system diffuses around the saddle point statth fluc-
tuation of ordere?), and a second non-Gaussian stage where
a fluctuation enhancemefy(t)~1] occurs as the system
makes the transition to the final state.

It is reasonable to expect a similar situation in the growth
of a large fluctuation from a stabler metstablgstate. If the
% fluctuation grows up to and over the saddle point, then, as
o & L8 —— discussed in Sec. B, the extensivity assumption breaks
-80 -60 -40 -20 0 down, and large non-Gaussian fluctuations should occur. In

! this case, we may expect some features of the scaling regime

FIG. 1. Forr=5, h=0, and €2=0.001: (a) is average path Of Suzuki's theory to apply. On the other hand, for transi-
(x(t)), and(b) the variancey(t). The timet=0 is when the sample tional paths that end at the poixt=x;—4J, ¢>0 (i.e., fluc-
paths pass the fluctuational state, ix({=0)=xq=0.9%,,. The tuations that do not make it over the potential bajree can
boundary conditions on the lattice axg=Xeq,X|=Xm=—Xeq (for ~ €xpect an anomalous fluctuation to occub# e.
h=0). In (b) the scale of the fluctuation well away from the peak is  In order to study the anomalous fluctuation, we performed
of order 2, which is too small to see in the figure. STMC simulations with the boundary conditions on the lat-

tice: Xp=X;=Xs— 6 andx,=X,,. The anomalous fluctuation

X5~0.9Xq. IN practice, once; is well over the barrier X relation strictly holds foré>e. Thus we should havéx|
>Xs), the statistics do not depend too much on the exacsufficiently larger tharxs, so that we can satisfy> e, for
location ofx;. not unreasonably small noise levels. Nonetheless, for the

Since we can regard the system as sitting at the metastabdgstem parameters studied here, one can clearly see the scal-
state for a long timefor small nois¢, we can think of the ing A~1/8° in Fig. 2. The peak value of is also ob-

04
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FIG. 2. The anomalous fluctuatign[the peak value of(t)] as
a function of 16% for €2=0.01, h=0, andr=5. The boundary
conditions on the lattice arg-=x,— 6= — 6 (6>0) andx,=X,,=
—Xeg-

served to occur at the expected time scale 183)L[5]. The

Pr(X%,t|Xq,0:Xm , — %) ~ p(X,0[ X ,t) = p(X, — t[X4,0),
(3.5

where the relatiorp(a,t;xy,,—*)~ exp(—H(a)) (for state

a in the basin of attraction of,,) has been used, and time-
translational symmetry for the second equality. The right
hand side of Eq(3.5) is the transition probability that de-
scribes thedecayfrom an initial statex; . Hence the prehis-
tory probability distribution is simply the transition probabil-
ity for the corresponding decay process. Therefore the
increase in the fluctuation of the form1/8? (for 5> €), for

the transitionx,,—Xs— &, is the anomalous fluctuation fea-
ture[5] observed in the decay from the initial state- 6. A
behavior of the form 1&,—xg)? for the fluctuation was ob-
served in Ref[8] for the model(3.1), but the connection to
Suzuki's scaling theory was not recognized.

We note that the above result is not strictly applicable to
spatially extended or microscopic systems. This is because
the fluctuational state of interest for these systems will typi-
cally be a coarse-grained one, i.e., the stateould denote
gquantities averaged over the system configuratmoserv-
ables such as the average magnetization and energy, or a
Fourier mode, etg, while x,, and x; would be microcon-
figuration states. The Markov property used in E32) (as
well as the detailed balance conditjoare conditions im-
posed on thémicroscopi¢ configurations, and do not gen-
erally hold for a transition from a microconfiguration to a
coarse-grainedor macrg state. Nonetheless, we can still
expect some related feature to persist in more geligpatial
extendedl systems. In particular, in the decay of the meta-
stable statexX,— X, it is likely that some type of anoma-

anomalous feature is a direct result of the detailed balancgus fluctuation(i.e., say an increase or peak in the fluctua-
condition (2.8. We can demonstrate this in the following tion before or close to the saddle point sjahould occur.

fashion[13].

This was observed in a quasilinear spin model in R&9],

As mentioned above, the statistical quantity we are meaand in our preliminary simulations of a spatially extended
suring with the STMC algorithm is the prehistory probability version of Eq.(3.1). A spatially extended system will be

distribution, which can be written gsecall thatt<0)

_ p(xflvolx’t)p(xvt|xm ’ _Oc)

P(X,0[ X, — ) ’
(3.2

Pr(X,t[Xg,0; X , — )

investigated in a future work.

As shown in Fig. 1a), there is a plateau region where the
system diffuses around the saddle point state with fluctuation
x~ €. The time scal€l,, characterizing this region where
(x)~Xs increases ag—0, and the Suzuki scaling res(,
~—1Iné€? is, in fact, observed in our simulatior®ith x;

where the Markov property has been used. The quantity=Xs+ 6, for 6>¢). This behavior of the plateau region is
p(b,t|a,0) is the transition probability which can be ex- interesting, but the divergence as-0 is expected to be a

pressed as

p(b,t|a,0)=f dx; P(Xi ,ti—Xi+1,t+1),

i=0ON—1

(3.3

where to=0ty=t,Xo=2a,Xy=b, and P is the transition
probability fromt;—t;, ;=t; +dt. From the detailed balance
condition[Eq. (2.8)], which is satisfied to first order idt
(we can ignore thelt\/dt correctiong, the above expression
becomes

exp(—H(b))

P(b.t}a,0)=p(a.t/b,0) L TS

(3.4

Thus we have, for expressidB.2),

feature of the low dimensionality of the system. For micro-
scopic models(microscopig¢ fluctuations persist in the ther-
modynamic limite?~1NV—0, and hence one would expect
T, to remain finite.

Because of the plateau feature arouqavith fluctuation
size~ €2, it is not meaningful to set;= X, in the prehistory
distribution. p, is operationally well defined fdx; — X4 suf-
ficiently greater thare. If we setx;=x;— & (for positive §
with 6~ ¢€), then from the discussion above we have that
[see EQ.(3.9] pn(X,t|Xq,0;Xm, —*) ~p(X, —t|x4,0), which
means that at least at the boundary of Suzuki’s scaling theory
(6~ ¢€), the statistical properties of the decay is the same as
the growth.

However, we are more interested in the decay of the
metastable state, i.e., transitional paths that go all the way
over the barrier. In this case we negg- x> e (we choose
X~ 0.Kqq in our simulationg and the quantityy, is more
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FIG. 3. The fluctuation enhancemd®as a function of 12, for FIG. 4. The second momefi®) for r=5 andh=0 as a func-
r=5 and h=0. The noise levels shown in the figure aeé tion of the rescaled timer [Eq. (3.6)] at various noise levels:

=0.0005,0.001,0.005, and 0.01. This linear behavior persists ts>=0.0005(circle), 0.001(squarg, 0.002(triangle up, 0.005tri-

noise levels up ta?~0.05. angle lef}, 0.01 (triangle down, and 0.02(triangle righ}.

nontrivial (it now involves the transition probability for the ~ Finally, as shown in Fig. (b), once the system is over the
transition over the potential barrjefThe interesting feature saddle point, the fluctuation is of ordere? and the system
in the data[see Fig. 1b)] is the peak iny that occurs well  decays according to the most probable pathF (the zero
before the saddle point. This peak is the non-Gaussian flugoise path This is the case except for a much smaller peak
tuation that we generally expect due to the slowing down ofwhich does seem to be a fluctuation enhancement gfifect
the system as it crosses the saddle point. In order to quantiffre fluctuation as the system decays to equilibrium; the small
the large non-Gaussian fluctuations, very long runs were repeak occurs close to~—5 in Fig. 1(b). The statistics near
quired to obtain reliable statistics. In particular, for verythe second peak are more sensitive to the final time con-
small noise, sufficiently long runs were necessary to allowstraint, and it is difficult to say whether the smaller peak is an
the plateau regiofflat region at the saddle pojrtb relax. In - enhancement that scales likee3(albeit with a much smaller
Fig. 3, we show the peak of as a function of the noise magnitude and prefactbase— 0. This strong asymmetry in
strength. Here the quantifyis taken as the ratio of the peak the size of the fluctuation before and after the saddle point is
value of  to the value in the metastable state. A fluctuationan interesting feature. It is important to note that the statistics
enhancement that scales accordin@Rte1/e? can clearly be  for the decay Xs—Xeg part of the transitionx,,—Xeq, being
seen in data. Similar scaling is observed for nonzerwith  conditioned on the final time, is different from the usual
a smaller slopé&which should vanish whehis large enough  study of the decay of fluctuations, which are conditioned on
to remove the potential barrjer the initial time.
In Fig. 4 we show the scaling of the second moment
(x?(t)) as a function of a rescaled time
IV. SUMMARY AND FUTURE WORK
T=€”exp(—2rt), (3.6 In this paper we have studied the statistical properties of
the transitional paths that describe the growth of very large
wheret=0 is taken to be the center of the plateau regionfluctuations out of a metastable state. We have introduced a
The nonlinear time transformatidB.6) is same scaling func- useful numerical method to quantify the statistics of these
tion [for model (3.1)] used in Suzuki’s theory for decay of rare events, and demonstrated the method for a bistable sto-
unstable statef5]. Although there is some error due to the chastic system. Various interesting statistical features were
precise location of=0, one can see that the collapse of thestudied and discussed, and the close connection to Suzuki’s
curves for differente values is fairly good, at least for theory has been pointed out. In particular, we have demon-
(x3(1))<0.72, which is the expected regime of validity strated that there is a fluctuation enhancement that scales like
(the scaling theory for the dec&$] is not valid for the late  1/e? (for e—0) as the system escapes over the potential

stage where the system approaches equilibrium barrier.
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It would be of interest to consider various extensions oferties of the barrier crossing, as studied in this paper, can be
this work. One would be to consider a nongradient dynamiinvestigated.
cal system, say by adding a time-dependent field to the A more interesting and relevant avenue of study is that of
Langevin dynamics. In this case, there is no known relatiora spatially extended model. Using the STMC scheme we can
between the average growth of the fluctuation and the decaypumerically study the configurational structure of the system
and the features of the optimal paths are more comj@e}. in the very early stages of nucleation. Of course, in this case,
We can easily perform a quantitative study with the numerithe crucial problem is how large a time axis is required. One
cal method used in this paper. In particular, the effect of thavould need to study nucleation events where the time scale
broken detailed balance condition on some of the featurefor the transition time is not too large, and the final state

discussed in this study should be investigated. would have to be suitably prepared to be a desired rare con-
Another possible application is the case of colored noisefiguration (i.e., a critical droplet in order to minimize the
i.e., dynamics of form(2.2), with the noise correlation size of the time axis in thd+ 1 volume. Needless to say, the

study would necessarily have to be more qualitative for spa-
4.1) tially extended systems. We hope to report on such a study in
' the near future.

62
(m(t)n(s))~—exp[—|t—s|/7].

This stochastic process can be cast as a path integral with a
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