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Statistical features of large fluctuations in stochastic systems
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The fluctuation of transitional paths that describe the decay from a metastable state are studied with a
space-time Monte Carlo algorithm. For a bistable stochastic system we characterize the statistical properties
that describe the growth of large fluctuations. Interesting statistical features are discussed. In particular, we
study the fluctuation enhancement~large non-Gaussian fluctuation! that occurs as the system escapes from a
metastable state. The results are discussed in the context of a scaling theory for the decay from an unstable
state.@S1063-651X~99!12202-5#
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I. INTRODUCTION

The occurrence of large fluctuations is fundamental
many physical processes, such as nucleation in phase tr
tions, chemical reactions, mutations in DNA sequences,
failures in electronic devices. A typical large fluctuation
one that enables a system to escape from a metastable
Although such events are rare, they are responsible fo
broad variety of physical processes.

The study of large fluctuations is difficult due to the rar
of the events. As such, there is little known regarding
statistics of these events. The only known insight into
study of large fluctuations goes back to the work of Onsa
and Machlup@1#. For small noise Langevin dynamics, th
distribution of transitional paths~trajectories that describ
the growth of a fluctuation out of a stable state! is sharply
peaked around a most probable or optimal path. For equ
rium systems, the optimal path for a transition to some fl
tuational state is the time-reversed path of the decay of
fluctuation. Aside from this fundamental time reversibility
the optimal path for equilibrium dynamics, there are fe
known generic features for the growth of large fluctuatio
For nongradient dynamical systems~nonequilibrium sys-
tems! the situation is far more nontrivial; recent studies ha
indicated interesting behavior~singularities! in the pattern of
optimal paths@2,3#.

There has been extensive work on the decay and re
ation of fluctuations to the equilibrium state. Starting from
Master equation level, the extensivity property~system size
or small noise expansion! is used to derive equations for th
most probable behavior@4#. For the decay of large fluctua
tions, such as the decay from an unstable state~saddle point!,
it is known that the system size expansion breaks down,
the most probable path is not meaningful@5#; this is also the
case for the decay of metastable states@6#. Thus we can
expect nontrivial~i.e., non-Gaussian! behavior in the statis-
tical distribution of the transitional paths that describe la
fluctuations from a locally stable state, i.e., fluctuatio
whereby the system makes a transition from a metast
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state up to and over the free-energy barrier. This is precis
what we wish to study in this paper: the statistical propert
of the transitional paths that describe the escape from a m
stable state.

We introduce an efficient method to study large fluctu
tions in stochastic systems. The method, a space-time M
Carlo ~STMC! algorithm, was used in Ref.@7# in a study of
the dynamic critical exponent in the Ising model. In th
paper, we adapt the method for the purpose of characteri
the statistical properties of the transitional paths in the in
esting regime where the barrier height is much larger th
the noise strength. There was related work in Ref.@8#, where
the fluctuational paths were generated by an analog ele
circuit system. The fluctuational state in this study was
very close to the saddle point; this is due to the difficulty
sampling large fluctuations in real time. The method we u
in this paper allows us to study numerically the more ina
cessible regime of fluctuations that drive the system all
way over the potential barrier in the limit of very sma
noise. The statistics of such processes are very difficul
study, and, to our knowledge, the work we present here is
first such study. Our goal is to search for some generic f
tures that characterize the growth of large fluctuations, an
particular, to study the early stages of rare nucleation eve
in multicomponent systems. Indeed our primary motivati
for devising the STMC method is the possibility of applyin
it to the study of rare nucleation events in physical syste
In this paper, to illustrate the method and approach, we st
a simple bistable stochastic model.

Our main interest in this study is the fluctuation of th
transitional paths that start at a~locally! stable or metastable
state and grow up to some fluctuational state. For the mo
bistable system studied here, we study and characterize
statistical properties of the transitional paths in the limit
small noise. In particular, we quantify the large no
Gaussian fluctuations that result from the system transv
ing the potential barrier. The basic features of the data, s
as an anomalous fluctuation and a fluctuation enhancem
will be discussed in analogy with Suzuki’s scaling theory@5#
for the decay from an unstable state.

In Sec. II we outline the STMC method and some relev
theoretical background. The model and the results are
ic
1563 ©1999 The American Physical Society
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cussed in Sec. III, followed by a brief summary and outli
of future work in Sec. IV.

II. METHOD AND BACKGROUND

A. STMC

In order to study the statistics of rare events, one nee
method that can efficiently generate an ensemble of s
events. The method we use is a space-time Monte C
algorithm. The principal idea is to study histories, who
space-time paths, in contrast to the usual approach, whic
to update a spatial lattice. A common feature of the mod
we are interested in is that the probability for an entire h
tory may be expressed in terms of an action function wh
Lagrangian is a local function in the field variablesf(x,t)
~and field derivatives!, i.e., in the form

W; exp@2S#, ~2.1!

with S5*dt L„f(x,t),ḟ(x,t)…. This form of the probability
weight on the path space is guaranteed for Markov proces
such as the Langevin dynamics considered in this work.
consider Langevin dynamics of the form~for simplicity the
case of a scalar field and additive noise!

ḟ5F~f,t !1eh, ~2.2!

whereh is the zero mean Gaussian white noise with varia
^h(x,t)h(x8,s)&5d(t2s)d(x2x8), and e2 is the overall
strength of the noise. The probability weight on the pa
space for model~2.2! is given by@9,10#

W;expF2
1

e2
S02S1G , ~2.3!

whereS0 is the Onsager-Machlup action@1#,

S05 1
2 E ~ḟ2F !2dx dt, ~2.4!

and the term higher order in the noise is given byS1
5 1

2 *]fF dx dt @11#.
In the STMC algorithm, the objective is to generate h

tories over some time-intervalT with probability weightW.
This is achieved in the usual manner by the Metropolis
gorithm@12#, i.e., by imposing the detailed balance conditi

P„f~x,t !→f8~x,t !…

P„f8~x,t !→f~x,t !…
5exp„S~f~x,t !…2S„f8~x,t !…,

~2.5!

whereP„f(x,t)→f8(x,t)… denotes the transition probabi
ity between twospace-timeconfigurations, and the ‘‘Hamil-
tonian’’ in Eq. ~2.5! is the action functional defined on th
path space asH5S;2 ln W. The detailed balance conditio
guarantees that after many iterations or MC steps~a MC step
here refers to an update over the whole space-time volum!,
the probability of a path is sampled according toW
;exp@2S#.

The boundary conditions on the space-time lattice of
form f(t50)5f I ,f(t5T)5fF , allows us to study the
a
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fluctuation of the fieldf conditioned on an initial and future
time constraint. Thus we can study the statistical quan
r(f,tufF ,T;f I ,0) (tP@0,T#), which can describe the ef
fect a future time constraint has on the present. Schulm
considered such a quantity recently to clarify the issue
time-reversibility in thermodynamics and cosmology@13#.
For the purpose of studying rare transitions out of a me
stable statefm to some fluctuational stateffl , one generates
an ensemble of trajectories with the boundary conditio
f I5fm ~metastable state!, andfF5ffl , where the fluctua-
tional stateffl is the equilibrium state~or a saddle point
state, a critical droplet, etc.!.

The notion of introducing a Hamiltonian defined on th
path space has been discussed@14,15# for discrete space-time
models~probabilistic cellular automata!. For discrete space
time models@where we denote bys(t) the ~spin! configura-
tion of the system at timet], the weight becomes

W5)
t

P„s~ t !us~ t21!…5)
i ,t

pit„si~ t !us~ t21!,xi~ t21!…,

~2.6!

whereP„s(t)us(t21)… denotes the transition probability be
tween two spatial configurations at adjacent time slicei
labels the spatial lattice site,pit denotes the individual site
transition rate, andxi(t) denotes the set of spins~e.g., nearest
neighbors! on whichpit depends. Note that by the structu
of the weightW, the dynamics of the system is one in whic
the spatial spin configuration is updated simultaneously~in
parallel!, in contrast to the usual MC where the update
done sequentially~i.e., after each spin flip!. It is important to
notice that because of the parallel update structure, if
single site transition rate satisfies detailed balance with
spect to some Hamiltonian, the same detailed balance co
tion may not hold forP„s(t)us(t21)…. In particular, for the
case wherepit is the Glauber transition ratepit50.5„1
2 tanh(DH/2kbT)…, for say an Ising system, the detailed ba
ance condition with respect to the Ising Hamiltonian is n
satisfied forP„s(t)us(t21)… @14#. One can strictly impose
the detailed balance condition by introducing the two-s
Domany algorithm@16#. However, the STMC algorithm is
somewhat tedious to code, and the two-step update sch
does not seem to be a very natural dynamics.

In this paper, we study a continuum model, where
above issue of detailed balance does not arise~except for
discretization corrections, see below!. For Langevin models
of the form ḟ5F1eh, one can express the action fun
tional ~2.3! to first order in the time discretization as@10,17#
~suppressing the space dependence!

S5
dt

2e2 (
i

H f~ t i !2f~ t i 21!

dt
2aF~f i !2bF~f i 21!J 2

1dt a(
i

]f i 21
F~f i 21!, ~2.7!

where dt5t i2t i 21 , f(t i)5f i , and a1b51, 0<a,b
<1. The family of actions parametrized bya and b arises
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from the equivalent ways of discretizing a continuous fun
tion. The different choices ofa and b result in correction
terms of orderdtAdt.

For the case whereF52]fH ~as in the model studied in
this paper!, the detailed balance condition with respect toH
is satisfied to orderdtAdt, i.e.,

P„f~ t !→f8~ t1dt!…

P„f8~ t !→f~ t1dt!…
5 exp@H~f!2H~f8!1O~dtAdt!#.

~2.8!

B. Small noise limit

In the limit of zero noisee→0, the average or most prob
able pathfo(t) is obtained by minimizing the Onsage
Machlup action~2.4!. Consider a zero-dimensional bistab
system, where the stable states (feq or fm) are separated by
a saddle pointfs . For gradient dynamics (F52]fH), the
optimal path is

ḟo~ t !52F„fo~ t !… ~2.9!

for the growth of a fluctuation,~i.e., say for the transition
feq→ffl ,ffl,fs), and

ḟo~ t !5F„fo~ t !… ~2.10!

for the decay (ffl→feq,ffl.fs). The optimal path that
connects one attractor to another is given by connecting
above two solutions separated by an infinite time span wh
the system sits at the saddle pointfs .

We are interested in studying thefluctuationof the tran-
sitional paths. The quantity of interest is

x~ t !5^f2~ t !&2^f~ t !&2, ~2.11!

where ^ & denotes an ensemble average. At the Gaus
level, x is determined by the inverse of the fluctuation o
eratorL, which is obtained by expanding the action fun
tional ~2.4! to second order around the optimal pathf0(t),

L5~F9F1F8F8!2] t
2 , ~2.12!

whereF85]fo(t)F„fo(t)….
As mentioned in Sec. I, the small noise expansion bre

down for the decay from an unstable or metastable state,
thus the zero noise theory is a singular limit. This singular
is related to the breaking of the time translational symme
Consider the kinklike trajectoryfo(t) connectingfm at t
50 to fs at t5T. The position of the kink can occur any
where along the time axis, and is a Goldstone mode~in the
limit T→`). For largeT, the zero noise path exhibits
turning point near the saddle point whereḟo'0. This feature
leads to an infinite variance, since the fluctuation operatoL
has the solutionLḟo(t)50, and due to the turning point a
fs ~note thatḟo50 at the stable or metastable states!, ḟo(t)
is a zero eigenvalue of the fluctuation operator. This z
eigenvalue signals the breakdown of the Gaussian~small
noise! approximation.

Our main interest in this paper is in the fluctuations of t
transitional pathsfm→feq, which are characterized by th
-
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statistical quantityr(f,tufeq,T;fm ;0). For gradient dy-
namical models the system passes through the saddle po
the decay process (fm→feq), and thus, as discussed abov
the variance~2.11! at the Gaussian level diverges~the small
noise expansion breaks down!. The way to regularize the
variance is to introduce the notion of collective coordinat
in this case the collective coordinate being the position of
kink. There has been work on using the method of collect
coordinates for the decay from an unstable state in stocha
models @18#. However, we are not aware of any work o
directly calculating the expressionr(f,tufeq,T;fm ;0), in
particular for the regime of interest wheref(t) is not close
to eitherfm or feq.

III. RESULTS AND DISCUSSION

The simulations were performed for the model~note that
we now use the notationf5x)

ẋ5F5rx2x31h1eh, ~3.1!

where r .0, and the noise strength parameter ise2. For h
50, we havexm52xeq52Ar and xs50. The Metropolis
algorithm is used to update the~temporal! lattice. The lattice
was updated by selecting a point, perturbing it, finding
difference in the actionS between the two configurations
and accepting the move using the Metropolis algorithm.
in usual MC simulations, we can choose different ways
update the configurations and different sampling functio
~aside from the Metropolis one! to improve statistics and
increase efficiency. However, in this paper, for simplici
the ‘‘proposal’’ moves are local moves~i.e., the field vari-
able at a given site is deviated by a random amount on s
interval!.

The data presented for the model system were found w
the choicea5b50.5 in Eq.~2.7!, which corresponds to the
Stratonovich discretization. We do not expect the qualitat
features of the result to be sensitive to the choice ofa andb.
Some data were checked for the casea51,b50 ~Ito dis-
cretization! to confirm this. Data were also taken for
smaller dt, and no qualitative change was observed. T
time increment for the simulations reported below wasdt
50.05, and the extent of the time axisT was chosen to be
sufficiently larger than the typical time scale for the tran
tion, which decreases withr. For a given simulation, roughly
about 107 or 108 ~for very small noise! MC steps~recall that
a MC step refers to an update over the temporal lattice
size T) were used to relax the system, and th
the statistics were obtained by averaging over anot
'53107(108) MC steps.

Figure 1 shows the typical behavior for the average p
and the fluctuationx(t) for the transitionxm→xeq. For each
sample path, statistics were obtained for the process f
time t50 ~first time slice of the lattice! up to the time where
the system crosses a given pointxfl . Since the transition
from xm→xfl can occur anywhere along the temporal lattic
we monitor the time when the process hitsxfl, and accumu-
late statistics to the left of this time. We are interested in
behavior of the process as it nucleates~i.e., as it makes it all
the way over to the equilibrium state!; therefore we choose
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xfl'0.9xeq. In practice, oncexfl is well over the barrier (xfl
@xs), the statistics do not depend too much on the ex
location ofxfl .

Since we can regard the system as sitting at the metas
state for a long time~for small noise!, we can think of the

FIG. 1. For r 55, h50, and e250.001: ~a! is average path
^x(t)&, and~b! the variancex(t). The timet50 is when the sample
paths pass the fluctuational state, i.e.,x(t50)5xfl50.9xeq. The
boundary conditions on the lattice arexF5xeq,xI5xm52xeq ~for
h50). In ~b! the scale of the fluctuation well away from the peak
of ordere2, which is too small to see in the figure.
ct

ble

initial time as being att52`. As mentioned above, fo
each sample path in the ensemble we can referencet50 to
be the time where the system reachesffl . Thus the STMC
algorithm allows us to measure the statistical quan
r(x,tuxfl,0;xm ,2`) (t,0), termed the prehistory probabi
ity in Ref. @8#. The effect of the final time boundary cond
tion on the lattice,xF5xeq, is irrelevant ifxfl is well over the
barrier and the noisee2 is small.

Some interesting features to be noted in Fig. 1 are the
region at the saddle point (^x&50), which increases as th
noise decreases, and the peak inx that occurs in the growth
of the fluctuation@i.e., the region̂ x(t)&,xs]. The location
of the peak occurs around̂x&51.4, which is close to the
spinodal point (5Ar /3); away from this peak the fluctuatio
is of ordere2. Also, though not visible on the scale of Fig.
the fluctuation quickly relaxes fromx50 at the end points of
the lattice~due to the fixed field constraint at the ends of t
lattice! to the correct value@given by x5e2/2F8(xm,eq)] in
the metastable and equilibrium states, respectively. Fina
for a STMC simulation with the boundary conditionsxF

5xf,xs ,xI5xm , we find a strong dependence ofx on xfl ;x
increases considerably withxfl for xfl,xs .

In order to analyze the general features of the data,
consider the problem of the decay from an unstable state
small noise Langevin dynamics. We know that the extens
ity property breaks down and the small noise behavior in t
regime is described by a scaling theory@5#. In particular,
there is an extensive region whered@e2m, and a scaling
regime whered,e2m;d denotes the deviation of the initia
state from the unstable~saddle point! state, and the positive
exponentm5 1

2 for our model system. The fluctuation in th
extensive regime scales ase2, and is characterized by a
anomalous fluctuation that scales withd asA;1/d2 @A is the
peak value ofx(t) as the system decays to equilibrium#. In
the scaling regime, the zero noise limit is a singular lim
The decay of the system in the scaling regime is charac
ized by an initial stage with time scaleTo;2 ln(e2), where
the system diffuses around the saddle point state~with fluc-
tuation of ordere2), and a second non-Gaussian stage wh
a fluctuation enhancement@x(t);1# occurs as the system
makes the transition to the final state.

It is reasonable to expect a similar situation in the grow
of a large fluctuation from a stable~or metstable! state. If the
fluctuation grows up to and over the saddle point, then,
discussed in Sec. II B, the extensivity assumption bre
down, and large non-Gaussian fluctuations should occur
this case, we may expect some features of the scaling reg
of Suzuki’s theory to apply. On the other hand, for tran
tional paths that end at the pointxfl5xs2d, d.0 ~i.e., fluc-
tuations that do not make it over the potential barrier! we can
expect an anomalous fluctuation to occur ifd@e.

In order to study the anomalous fluctuation, we perform
STMC simulations with the boundary conditions on the l
tice: xF5xf5xs2d andxI5xm . The anomalous fluctuation
relation strictly holds ford@e. Thus we should haveuxmu
sufficiently larger thanxs , so that we can satisfyd@e, for
not unreasonably small noise levels. Nonetheless, for
system parameters studied here, one can clearly see the
ing A;1/d2 in Fig. 2. The peak value ofx is also ob-
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served to occur at the expected time scale ln (1/d2) @5#. The
anomalous feature is a direct result of the detailed bala
condition ~2.8!. We can demonstrate this in the followin
fashion@13#.

As mentioned above, the statistical quantity we are m
suring with the STMC algorithm is the prehistory probabili
distribution, which can be written as~recall thatt,0)

rh~x,tuxfl,0;xm ,2`!5
p~xfl,0ux,t !p~x,tuxm ,2`!

p~xfl,0uxm ,2`!
,

~3.2!

where the Markov property has been used. The quan
p(b,tua,0) is the transition probability which can be e
pressed as

p~b,tua,0!5E )
i 50,N21

dxi P~xi ,t i→xi 11 ,t i 11!,

~3.3!

where t050,tN5t,x05a,xN5b, and P is the transition
probability fromt i→t i 115t i1dt. From the detailed balanc
condition @Eq. ~2.8!#, which is satisfied to first order indt
~we can ignore thedtAdt corrections!, the above expressio
becomes

p~b,tua,0!5p~a,tub,0!
exp„2H~b!…

exp~2H~a!…
. ~3.4!

Thus we have, for expression~3.2!,

FIG. 2. The anomalous fluctuationA @the peak value ofx(t)] as
a function of 1/d2 for e250.01, h50, and r 55. The boundary
conditions on the lattice arexF5xs2d52d (d.0) andxI5xm5
2xeq.
ce

a-

ty

rh~x,tuxfl,0;xm ,2`!;p~x,0uxfl ,t !5p~x,2tuxfl,0!,
~3.5!

where the relationp(a,t;xm ,2`); exp„2H(a)… ~for state
a in the basin of attraction ofxm) has been used, and time
translational symmetry for the second equality. The rig
hand side of Eq.~3.5! is the transition probability that de
scribes thedecayfrom an initial statexfl . Hence the prehis-
tory probability distribution is simply the transition probabi
ity for the corresponding decay process. Therefore
increase in the fluctuation of the form;1/d2 ~for d@e), for
the transitionxm→xs2d, is the anomalous fluctuation fea
ture @5# observed in the decay from the initial statexs2d. A
behavior of the form 1/(xs2xfl)

2 for the fluctuation was ob-
served in Ref.@8# for the model~3.1!, but the connection to
Suzuki’s scaling theory was not recognized.

We note that the above result is not strictly applicable
spatially extended or microscopic systems. This is beca
the fluctuational state of interest for these systems will ty
cally be a coarse-grained one, i.e., the statex would denote
quantities averaged over the system configuration~observ-
ables such as the average magnetization and energy,
Fourier mode, etc.!, while xm and xfl would be microcon-
figuration states. The Markov property used in Eq.~3.2! ~as
well as the detailed balance condition! are conditions im-
posed on the~microscopic! configurations, and do not gen
erally hold for a transition from a microconfiguration to
coarse-grained~or macro! state. Nonetheless, we can st
expect some related feature to persist in more general~spatial
extended! systems. In particular, in the decay of the me
stable state (xm→xeq), it is likely that some type of anoma
lous fluctuation~i.e., say an increase or peak in the fluctu
tion before or close to the saddle point state! should occur.
This was observed in a quasilinear spin model in Ref.@19#,
and in our preliminary simulations of a spatially extend
version of Eq.~3.1!. A spatially extended system will be
investigated in a future work.

As shown in Fig. 1~a!, there is a plateau region where th
system diffuses around the saddle point state with fluctua
x;e2. The time scaleTo , characterizing this region wher
^x&;xs increases ase→0, and the Suzuki scaling resultTo
;2 ln e2 is, in fact, observed in our simulations~with xfl
5xs1d, for d@e). This behavior of the plateau region
interesting, but the divergence ase→0 is expected to be a
feature of the low dimensionality of the system. For micr
scopic models,~microscopic! fluctuations persist in the ther
modynamic limite2;1/V→0, and hence one would expe
To to remain finite.

Because of the plateau feature aroundxs with fluctuation
size;e2, it is not meaningful to setxfl5xs in the prehistory
distribution.rh is operationally well defined foruxfl2xsu suf-
ficiently greater thane. If we setxfl5xs2d ~for positived
with d;e), then from the discussion above we have th
@see Eq.~3.5!# rh(x,tuxfl,0;xm ,2`);p(x,2tuxfl,0), which
means that at least at the boundary of Suzuki’s scaling the
(d;e), the statistical properties of the decay is the same
the growth.

However, we are more interested in the decay of
metastable state, i.e., transitional paths that go all the
over the barrier. In this case we needxfl2xs@e ~we choose
xfl;0.9xeq in our simulations!, and the quantityrh is more
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nontrivial ~it now involves the transition probability for th
transition over the potential barrier!. The interesting feature
in the data@see Fig. 1~b!# is the peak inx that occurs well
before the saddle point. This peak is the non-Gaussian fl
tuation that we generally expect due to the slowing down
the system as it crosses the saddle point. In order to qua
the large non-Gaussian fluctuations, very long runs were
quired to obtain reliable statistics. In particular, for ve
small noise, sufficiently long runs were necessary to all
the plateau region~flat region at the saddle point! to relax. In
Fig. 3, we show the peak ofx as a function of the noise
strength. Here the quantityR is taken as the ratio of the pea
value ofx to the value in the metastable state. A fluctuati
enhancement that scales according toR;1/e2 can clearly be
seen in data. Similar scaling is observed for nonzeroh, with
a smaller slope~which should vanish whenh is large enough
to remove the potential barrier!.

In Fig. 4 we show the scaling of the second mome
^x2(t)& as a function of a rescaled time

t5e2 exp~22rt !, ~3.6!

where t50 is taken to be the center of the plateau regi
The nonlinear time transformation~3.6! is same scaling func
tion @for model ~3.1!# used in Suzuki’s theory for decay o
unstable states@5#. Although there is some error due to th
precise location oft50, one can see that the collapse of t
curves for differente values is fairly good, at least fo
^x2(t)&,0.7xm

2 , which is the expected regime of validit
~the scaling theory for the decay@5# is not valid for the late
stage where the system approaches equilibrium!.

FIG. 3. The fluctuation enhancementR as a function of 1/e2, for
r 55 and h50. The noise levels shown in the figure aree2

50.0005, 0.001, 0.005, and 0.01. This linear behavior persist
noise levels up toe2;0.05.
c-
f
ify
e-

t

.

Finally, as shown in Fig. 1~b!, once the system is over th
saddle point, the fluctuation is of order;e2 and the system
decays according to the most probable pathẋ5F ~the zero
noise path!. This is the case except for a much smaller pe
~which does seem to be a fluctuation enhancement effec! in
the fluctuation as the system decays to equilibrium; the sm
peak occurs close tot'25 in Fig. 1~b!. The statistics near
the second peak are more sensitive to the final time c
straint, and it is difficult to say whether the smaller peak is
enhancement that scales like 1/e2 ~albeit with a much smaller
magnitude and prefactor! ase→0. This strong asymmetry in
the size of the fluctuation before and after the saddle poin
an interesting feature. It is important to note that the statis
for the decay (xs→xeq) part of the transitionxm→xeq, being
conditioned on the final time, is different from the usu
study of the decay of fluctuations, which are conditioned
the initial time.

IV. SUMMARY AND FUTURE WORK

In this paper we have studied the statistical properties
the transitional paths that describe the growth of very la
fluctuations out of a metastable state. We have introduce
useful numerical method to quantify the statistics of the
rare events, and demonstrated the method for a bistable
chastic system. Various interesting statistical features w
studied and discussed, and the close connection to Suz
theory has been pointed out. In particular, we have dem
strated that there is a fluctuation enhancement that scales
1/e2 ~for e→0) as the system escapes over the poten
barrier.

to

FIG. 4. The second moment^x2& for r 55 andh50 as a func-
tion of the rescaled timet @Eq. ~3.6!# at various noise levels
e250.0005~circle!, 0.001~square!, 0.002~triangle up!, 0.005~tri-
angle left!, 0.01 ~triangle down!, and 0.02~triangle right!.
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It would be of interest to consider various extensions
this work. One would be to consider a nongradient dyna
cal system, say by adding a time-dependent field to
Langevin dynamics. In this case, there is no known relat
between the average growth of the fluctuation and the de
and the features of the optimal paths are more complex@2,3#.
We can easily perform a quantitative study with the nume
cal method used in this paper. In particular, the effect of
broken detailed balance condition on some of the featu
discussed in this study should be investigated.

Another possible application is the case of colored no
i.e., dynamics of form~2.2!, with the noise correlation

^h~ t !h~s!&;
e2

t
exp@2ut2su/t#. ~4.1!

This stochastic process can be cast as a path integral w
local action functional@20#; the action contains a secon
time derivative term in the variablex @i.e., S

5*L(x,ẋ,ẍ)dt]. The STMC algorithm can therefore be a
plied to this system~boundary conditions on the lattice mu
now be specified for bothx and ẋ), and the statistical prop
.

.

s
er
f
i-
e
n
y,

i-
e
es

e,

a

erties of the barrier crossing, as studied in this paper, can
investigated.

A more interesting and relevant avenue of study is tha
a spatially extended model. Using the STMC scheme we
numerically study the configurational structure of the syst
in the very early stages of nucleation. Of course, in this ca
the crucial problem is how large a time axis is required. O
would need to study nucleation events where the time s
for the transition time is not too large, and the final sta
would have to be suitably prepared to be a desired rare c
figuration ~i.e., a critical droplet!, in order to minimize the
size of the time axis in thed11 volume. Needless to say, th
study would necessarily have to be more qualitative for s
tially extended systems. We hope to report on such a stud
the near future.
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